On the Finite-time Splash & Splat Singularities for the 3-d Free-surface Euler Equations
نویسندگان
چکیده
We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time “splash” (or “splat”) singularity first introduced in [9], wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface). Such singularities can occur when the crest of a breaking wave falls unto its trough, or in the study of drop impact upon liquid surfaces. Our approach is founded upon the Lagrangian description of the free-boundary problem, combined with a novel approximation scheme of a finite collection of local coordinate charts; as such we are able to analyze a rather general set of geometries for the evolving 2-D free-surface of the fluid. We do not assume the fluid is irrotational, and as such, our method can be used for a number of other fluid interface problems, including compressible flows, plasmas, as well as the inclusion of surface tension effects.
منابع مشابه
On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations
We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time “splash” (or “splat”) singularity first introduced in Castro et al. (Splash singularity for water waves, http://arxiv.org/abs/1106.2120v2, 2011), wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-inte...
متن کاملAbsence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem.
In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the "splash singularity" blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler...
متن کاملSplat Formation Mechanism in Thermal Spraying*
In order to understand the splat formation process of individual splat deposited by thermal spraying, commercially available Nickel powders with diameter of several tens micrometers were thermally sprayed onto mirror polished AISI304 substrate surface. The deposited splat shows transition phenomenon from splash type to disk one in flattening on collision onto substrate surface according to both...
متن کاملSurface Effects on Free Vibration Analysis of Nanobeams Using Nonlocal Elasticity: A Comparison Between Euler-Bernoulli and Timoshenko
In this paper, surface effects including surface elasticity, surface stress and surface density, on the free vibration analysis of Euler-Bernoulli and Timoshenko nanobeams are considered using nonlocal elasticity theory. To this end, the balance conditions between nanobeam bulk and its surfaces are considered to be satisfied assuming a linear variation for the component of the normal stress thr...
متن کاملThe Deterministic Generation of Extreme Surface Water Waves Based on Soliton on Finite Background in Laboratory
This paper aims to describe a deterministic generation of extreme waves in a typical towing tank. Such a generation involves an input signal to be provided at the wave maker in such a way that at a certain position in the wave tank, say at a position of a tested object, a large amplitude wave emerges. For the purpose, we consider a model called a spatial-NLS describing the spatial propagation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013